The Mordell–lang Question for Endomorphisms of Semiabelian Varieties
نویسندگان
چکیده
The Mordell–Lang conjecture describes the intersection of a finitely generated subgroup with a closed subvariety of a semiabelian variety. Equivalently, this conjecture describes the intersection of closed subvarieties with the set of images of the origin under a finitely generated semigroup of translations. We study the analogous question in which the translations are replaced by algebraic group endomorphisms (and the origin is replaced by another point). We show that the conclusion of the Mordell–Lang conjecture remains true in this setting if either (1) the semiabelian variety is simple, (2) the semiabelian variety is A2, where A is a one-dimensional semiabelian variety, (3) the subvariety is a connected one-dimensional algebraic subgroup, or (4) each endomorphism has diagonalizable Jacobian at the origin. We also give examples showing that the conclusion fails if we make slight modifications to any of these hypotheses. La conjecture du Mordell-Lang décrit l’intersection d’une sous-groupe de type fini avec une variété fermée d’une variété semi-abélienne. Equivalemment, cette conjecture décrit l’intersection de sous-variétés fermées avec la collection d’images de l’origine sous un semigroupe de translatés de type fini. Nous étudions la question analogue dans laquelle les translatés sont remplacées par les endomorphismes de groupe algébriques (et l’origine est remplacée par un autre point). Nous montrons qui la conclusion de la conjecture du MordellLang reste vraie dans ce paramètre si ou (1) la variété semi-abélienne est simple, (2) la variété semi-abélienne est A2, où A est une variété semi-abéliennne de dimension 1, (3) la sous-variété est une sous-variété semi-abéliennne de dimension 1, ou (4) la matrice jacobienne à l’origine du chaque endomorphisme est diagonalisable. Nous donnons aussi des exemples qui montre que la conclusion échoue si nous faisons l’affront à n’importe lequel de ces hypothéses.
منابع مشابه
Mordell-lang and Skolem-mahler-lech Theorems for Endomorphisms of Semiabelian Varieties
Using the Skolem-Mahler-Lech theorem, we prove a dynamical Mordell-Lang conjecture for semiabelian varieties.
متن کاملThe dynamical Mordell-Lang problem for étale maps
We prove a dynamical version of the Mordell-Lang conjecture for étale endomorphisms of quasiprojective varieties. We use p-adic methods inspired by the work of Skolem, Mahler, and Lech, combined with methods from algebraic geometry. As special cases of our result we obtain a new proof of the classical Mordell-Lang conjecture for cyclic subgroups of a semiabelian variety, and we also answer posi...
متن کاملInteger Points in Arithmetic Sequences
We present a dynamical analog of the Mordell-Lang conjecture for integral points. We are able to prove this conjecture in the case of endomorphisms of semiabelian varieties.
متن کاملPositive Characteristic Manin-mumford Theorem
We present the details of a model theoretic proof of an analogue of the Manin-Mumford conjecture for semiabelian varieties in positive characteristic. As a by-product of the proof we reduce the general positive characteristic Mordell-Lang problem to a question about purely inseparable points on subvarieties of semiabelian varieties.
متن کاملThe Mordell-lang Conjecture in Positive Characteristic Revisited
We prove versions of the Mordell-Lang conjecture for semiabelian varieties defined over fields of positive characteristic.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010